Título:
|
Mesoscopic mean-field theory for spin-boson chains in quantum optical systems
|
Autores:
|
Nevado Serrano, Pedro ;
Porras Torres, Diego
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Springer Heidelberg, 2013-02
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física
,
Tipo = Artículo
|
Resumen:
|
We present a theoretical description of a system of many spins strongly coupled to a bosonic chain. We rely on the use of a spin-wave theory describing the Gaussian fluctuations around the mean-field solution, and focus on spin-boson chains arising as a generalization of the Dicke Hamiltonian. Our model is motivated by experimental setups such as trapped ions, or atoms/qubits coupled to cavity arrays. This situation corresponds to the cooperative (E circle times beta) Jahn-Teller distortion studied in solid-state physics. However, the ability to tune the parameters of the model in quantum optical setups opens up a variety of novel intriguing situations. The main focus of this paper is to review the spin-wave theoretical description of this problem as well as to test the validity of mean-field theory. Our main result is that deviations from mean-field effects are determined by the interplay between magnetic order and mesoscopic cooperativity effects, being the latter strongly size-dependent.
|
En línea:
|
https://eprints.ucm.es/47360/1/PorrasTorreDiego%2006%20LIBRE%20PREPRINT.pdf
|