| Título: | On Banach-Spaces Of Vector-Valued Continuous-Functions | 
| Autores: | Cembranos, Pilar | 
| Tipo de documento: | texto impreso | 
| Editorial: | Australian Mathematics Publ, 1983 | 
| Dimensiones: | application/pdf | 
| Nota general: | info:eu-repo/semantics/restrictedAccess | 
| Idiomas: | |
| Palabras clave: | Estado = Publicado , Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores , Tipo = Artículo | 
| Resumen: | 
												Let K tie a compact Hausdorff space and let E be a Banach Space. We denote by C(K, E) the Banach space of all E-valued Continuous functions defined on K , endowed with the supremum Norm. Recently, Talagrand [Israel J. Math. 44 (1983), 317-321] Constructed a Banach space E having the Dunford-Pettis property Such that C([0, l ] , E) fails to have the Dunford-Pettis property. So he answered negatively a question which was posed some years ago. We prove in this paper that for a large class of compacts K (the scattered compacts), C(K, E) has either the Dunford-Pettis Property, or the reciprocal Dunford-Pettis property, or the Dieudonne property, or property V if and only if E has the Same property. Also some properties of the operators defined on C(K, E) are Studied.  | 
										
| En línea: | https://eprints.ucm.es/id/eprint/14976/1/12.pdf | 
Ejemplares
| Estado | 
|---|
| ningún ejemplar | 


								
