Título:
|
Non-Lipschitz differentiable functions on slit domains
|
Autores:
|
Bernal-González, L. ;
Jimenez Rodriguez, G. A. ;
Muñoz-Fernández, Gustavo A. ;
Seoane-Sepúlveda, Juan B.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Springer, 2017
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = En prensa
,
Materia = Ciencias: Matemáticas: Funciones (Matemáticas)
,
Tipo = Artículo
|
Resumen:
|
It is proved the existence of large algebraic structures—including large vector subspaces or infinitely generated free algebras—inside the family of non-Lipschitz differentiable real functions with bounded gradient defined on special non-convex plane domains. In particular, this yields that there are many differentiable functions on plane domains that do not satisfy the mean value theorem.
|
En línea:
|
https://eprints.ucm.es/41501/1/Mu%C3%B1ozFernandez105.pdf
|