Título:
|
On optimal approximation in periodic Besov spaces
|
Autores:
|
Cobos, Fernando ;
Kühn, Thomas ;
Sickel, Winfried
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2019-02-11
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = En prensa
,
Materia = Ciencias: Matemáticas
,
Materia = Ciencias: Matemáticas: Álgebra
,
Materia = Ciencias: Matemáticas: Análisis matemático
,
Tipo = Artículo
|
Resumen:
|
We work with spaces of periodic functions on the d-dimensional torus. We show that estimates for L?-approximation of Sobolev functions remain valid when we replace L1 by the isotropic periodic Besov space B01;1 or the periodic Besovspace with dominating mixed smoothness S01;1B. For t > 1=2, we also prove estimates for L2-approximation of functions in the Besov space of dominating mixed smoothness St 1;1B, describing exactly the dependence of the involved constants on the dimension d and the smoothness t.
|
En línea:
|
https://eprints.ucm.es/51180/1/Cobos110pre.pdf
|