Título:
|
Pointwise gradient estimates and stabilization for Fisher-KPP type equations with a concentration dependent diffusion
|
Autores:
|
Díaz Díaz, Jesús Ildefonso
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Inderscience publishers, 2010
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Ecuaciones diferenciales
,
Tipo = Artículo
|
Resumen:
|
We prove a pointwise gradient estimate for the bounded weak solution of the Cauchy problem associated to the quasilinear Fisher-KPP type equation ut ='(u)xx + (u) when ' satisÖes that '(0)=0; and (u) is vanishing only for levels u = 0 and u = 1. As a Örst consequence we prove that the bounded weak solution becomes instantaneously a continuous function even if the initial datum is merely a discontinuous bounded function. Moreover the obtained estimates also prove the stabilization of the gradient of bounded weak solutions as t ! +1 for suitable initial data.
|
En línea:
|
https://eprints.ucm.es/id/eprint/29736/1/157.pdf
|