Título:
|
Classification of minimal algebras over any field up to dimension 6.
|
Autores:
|
Bazzoni, Giovanni ;
Muñoz, Vicente
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Mathematical Society, 2012
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Topología
,
Tipo = Artículo
|
Resumen:
|
We give a classification of minimal algebras generated in degree 1, defined over any field k of characteristic different from 2, up to dimension 6. This recovers the classification of nilpotent Lie algebras over k up to dimension 6. In the case of a field k of characteristic zero, we obtain the classification of nilmanifolds of dimension less than or equal to 6, up to k-homotopy type. Finally, we determine which rational homotopy types of such nilmanifolds carry a symplectic structure.
|
En línea:
|
https://eprints.ucm.es/id/eprint/16956/1/VMu%C3%B1oz02.pdf
|