Título:
|
A canonical connection associated with certain G -structures.
|
Autores:
|
Sierra, José M. ;
Valdés Morales, Antonio
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Springer Verlag, 1997
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometría diferencial
,
Tipo = Artículo
|
Resumen:
|
Let P be a G-structure on a manifold M and AdP be the adjoint bundle of P. The authors deduce the following main result: there exists a unique connection r adapted to P such that trace(S iX Tor(r)) = 0 for every section S of AdP and every vector field X on M, provided Tor(r) stands for the torsion tensor field of r. Two examples, namely almost Hermitian structures and almost contact metric structures, are discussed in more detail. Another interesting result reads: for a given structure group G, if it is possible to attach a connection to each G-structure in a functorial way with the additional assumption that the connection depends on first order contact only, then the first prolongation of the Lie algebra of G vanishes
|
En línea:
|
https://eprints.ucm.es/id/eprint/22454/1/ValdesMo12.pdf
|