Resumen:
|
It is known that the concept of dissipativeness is fundamental for understanding the asymptotic behavior of solutions to evolutionary problems. In this paper we investigate the dissipative mechanism for some semilinear fourth-order parabolic equations in the spaces of Bessel potentials and discuss some weak conditions that lead to the existence of a compact global attractor. While for second-order reaction-diffusion equations the dissipativeness mechanism has already been satisfactorily understood (see Arrieta et al. (2004), doi:10.1142/S0218202504003234), for higher order problems in unbounded domains it has not yet been fully developed. As shown throughout the paper, one of the main differences from the case of reaction-diffusion equations stems from the lack of a maximum principle. Thus we have to rely here on suitable energy estimates for the solutions. As in the case of second-order reaction-diffusion equations, we show here that both linear and nonlinear terms have to collaborate in order to produce dissipativeness. Thus, the dissipative mechanisms in second-order and fourth-order equations are similar, although the lack of a maximum principle makes the proofs more difficult and the results not as complete.
Finally, we make essential use of the sharp results of Cholewa and Rodriguez-Bernal (2012), doi:10.1016/j.na.2011.08.022, on linear fourth-order equations with a very large class of linear potentials.
|