Título:
|
Scaling law for topologically ordered systems at finite temperature
|
Autores:
|
Iblisdir, I. ;
Pérez García, David ;
Aguado, M. ;
Pachos, J.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Physical Society, 2009-04-16
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física matemática
,
Tipo = Artículo
|
Resumen:
|
Understanding the behavior of topologically ordered lattice systems at finite temperature is a way of assessing their potential as fault-tolerant quantum memories. We compute the natural extension of the topological entanglement entropy for T>0, namely, the subleading correction I(topo) to the area law for mutual information. Its dependence on T can be written, for Abelian Kitaev models, in terms of information-theoretical functions and readily identifiable scaling behavior, from which the interplay between volume, temperature, and topological order, can be read. These arguments are extended to non-Abelian quantum double models, and numerical results are given for the D(S(3)) model, showing qualitative agreement with the Abelian case.
|
En línea:
|
https://eprints.ucm.es/id/eprint/17749/4/0806.1853v2.pdf
|