Título:
|
Dynamic Conditional Correlations for Asymmetric Processes
|
Autores:
|
Asai, Manabu ;
McAleer, Michael
|
Tipo de documento:
|
texto impreso
|
Fecha de publicación:
|
2011-08
|
Dimensiones:
|
application/pdf
|
Nota general:
|
cc_by_nc
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = No publicado
,
Materia = Ciencias Sociales: Economía: Econometría
,
Tipo = Documento de trabajo o Informe técnico
|
Resumen:
|
The paper develops two Dynamic Conditional Correlation (DCC) models, namely the Wishart DCC (wDCC) model. The paper applies the wDCC approach to the exponential GARCH (EGARCH) and GJR models to propose asymmetric DCC models. We use the standardized multivariate t-distribution to accommodate heavy-tailed errors. The paper presents an empirical example using the trivariate data of the Nikkei 225, Hang Seng and Straits Times Indices for estimating and forecasting the wDCC-EGARCH and wDCC-GJR models, and compares the performance with the asymmetric BEKK model. The empirical results show that AIC and BIC favour the wDCC-EGARCH model to the wDCC-GJR, asymmetric BEKK and alternative conventional DCC models. Moreover, the empirical results indicate that the wDCC-EGARCH-t model produces reasonable VaR threshold forecasts, which are very close to the nominal 1% to 3% values.
|
En línea:
|
https://eprints.ucm.es/id/eprint/13216/1/1130.pdf
|