Título:
|
1/f noise and very high spectral rigidity
|
Autores:
|
Relaño Pérez, Armando ;
Retamosa Granado, Joaquín ;
Faleiro, E. ;
Molina, R. A. ;
Zuker, A. P.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Physical Society, 2006-02
|
Dimensiones:
|
application/pdf
|
Nota general:
|
cc_by
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Termodinámica
,
Tipo = Artículo
|
Resumen:
|
It was recently pointed out that the spectral fluctuations of quantum systems are formally analogous to discrete time series, and therefore their structure can be characterized by the power spectrum of the signal. Moreover, it is found that the power spectrum of chaotic spectra displays a 1/f behavior, while that of regular systems follows a 1/f(2) law. This analogy provides a link between the concepts of spectral rigidity and antipersistence. Trying to get a deeper understanding of this relationship, we have studied the correlation structure of spectra with high spectral rigidity. Using an appropriate family of random Hamiltonians, we increase the spectral rigidity up to hindering completely the spectral fluctuations. Analyzing the long range correlation structure a neat power law 1/f has been found for all the spectra, along the whole process. Therefore, 1/f noise is the characteristic fingerprint of a transition that, preserving the scale-free correlation structure, hinders completely the fluctuations of the spectrum.
|
En línea:
|
https://eprints.ucm.es/id/eprint/27722/1/Relano39libre.pdf
|