Título: | Discriminating between tectonism and climate signatures in palustrine deposits:Lessons from the Miocene of the Teruel Graben, NE Spain |
Autores: | Alonso-Zarza, Ana María ; Meléndez Hevia, Alfonso ; Martín García, Rebeca ; Herrero Fernández, María Josefa ; Martín Pérez, Andrea |
Tipo de documento: | texto impreso |
Editorial: | Elsevier Science B.V., Amsterdam, 2012 |
Dimensiones: | application/pdf |
Nota general: | info:eu-repo/semantics/openAccess |
Idiomas: | |
Palabras clave: | Estado = Publicado , Materia = Ciencias: Geología: Petrología , Tipo = Artículo |
Resumen: |
The Upper Miocene (Vallesian–Turolian) Unit II of the Teruel Graben comprises at its top a 25 m-thick sequence of palustrine deposits. Deposition of the entire unit commenced some 9 to 7 Ma ago in a halfgraben basin. Here, via a recent quarry, we examine in detail the lateral and vertical distribution of Unit II's palustrine facies and their features to determine the palaeogeography and main controls on deposit formation. Our findings suggest the deposits formed at a low-gradient lake margin with different energy levels. These energy levels controlled the type of primary deposit within the lake; wackestone to packstone sediments formed in low-energy conditions, whereas cross-bedded rudstones to floatstones formed under higher energy conditions, by erosion and redeposition of prior lacustrine deposits. Pedogenic and diagenetic modifications of the primary sediments took place during sedimentary discontinuities (SD) when the lacustrine sediments were subaerially exposed. These processes serve to explain the formation of eight different palustrine limestones: limestones with root traces, mottled limestones, brecciated limestones, flat pebble breccias, granular limestones, micro-karstified limestones with laminar calcretes, carbonate mounds and clayey limestones with laminar calcretes. Based on the features and thicknesses of the modified sediments five different morphological stages (I to V) of palustrine carbonates are defined. Stage I is characterized by incipient mottling and brecciation. Stage II shows mottling and strong brecciation that lead to the formation of intraclast breccias, in which the fragments are mostly “in situ”. In Stage III, the primary fabric is totally changed; intraclasts have moved and may have lost their initial morphology. This Stage III may also be characterized by the formation of micro-karst. Stage IV is typified by the presence of coated grains and thin root mats. The chronological data available suggest that the formation of Stage III (lacustrine deposition+palustrine modification) would require about 40,000 yr. Facies and the SD record changes across short horizontal distances, and thus reflect the topography of prior sedimentation/modification events. Small (50 cm) highs with micro-karst have their SD counterparts in lower areas of the lake, in which the SD is indicated by desiccation and mottling. The topographic differences of the micro-karst were filled by intraclastic rudstones sourced by the adjacent carbonate flats. The example examined not only clearly sketches the morphology of ancient palustrine systems or wetlands, it also provides evidence that recycling of previous carbonate deposits played an important role as a sediment source, apart from biogenic or physical–chemical production processes. Our geochemical data indicate LMC (Low Magnesian Calcite) as the main component and Fe contents lower than 1%, except for the mottled areas that are richer in FeO. Stable isotope compositions provide ?18O values close to ?6.5‰ VPDB, and more varied ?13C (?3.39 to ?6.97‰ PDB). Oxygen and carbon values reveal no covariation and clear trends are lacking. The homogeneity of ?18O values reflects the intense effects of meteoric waters. The deposition of these palustrine limestones took place under suitable semi-arid to sub-humid climates. Climate could also have a role in determining subaerial exposure periods. However, its imprint is not easy to detect neither in the geochemical signals nor in the vertical arrangement of the facies. This could be attributed to climate changes probably occurring over shorter periods than those that can be recorded in this type of sediment, such as the astronomical precession cycles, and suggests the unsuitability of palustrine carbonates for detailed palaeoclimate analyses. Tectonism controlled the location of the main lacustrine depocentre close to the basin's main fault. The activity of this normal fault during the sedimentation of Unit II determined long- and short-term sedimentary sequences. Such sequences are the response to small-scale subsidence pulses followed by the infill of the created accommodation space by shallow lacustrine deposits, which underwent early pedogenic and diagenetic processes after subaerial exposure. |
En línea: | https://eprints.ucm.es/id/eprint/19961/1/earths12_01.pdf |
Ejemplares
Estado |
---|
ningún ejemplar |